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Deep exclusive charged π electroproduction above the resonance region
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A description of exclusive charged pion electroproduction (e, e′π±) off nucleons at high energies
is proposed. The model combines a Regge pole approach with residual effect of nucleon resonances.
The exchanges of π(140), vector ρ(770) and axial-vector a1(1260) and b1(1235) Regge trajectories are
considered. The contribution of nucleon resonances is described using a dual connection between
the exclusive hadronic form factors and inclusive deep inelastic structure functions. The model
describes the measured longitudinal, transverse and interference cross sections at JLAB and DESY.
The scaling behavior of the cross sections is in agreement with JLAB and deeply virtual HERMES
data. The results for a polarized beam-spin azimuthal asymmetry in (~e, e′π±) are presented. Model
predictions for JLAB at 12 GeV are given.

PACS numbers: 12.39.Fe, 13.40.Gp, 13.60.Le, 14.20.Dh

I. INTRODUCTION

At JLAB the exclusive reaction p(e, e′π+)n has been
studied for a wide range of photon virtualities Q2 at an
invariant mass of the π+n system around the onset of
deep inelastic scattering (DIS) regime, W ≃ 2 GeV [1–
5]. A separation of the cross section into the trans-
verse σT, longitudinal σL and interference σTT and σLT
components has been performed. The CLAS data for
the polarized beam single-spin asymmetry in p(~e, e′π+)n
are also available [6]. The HERMES data at DESY [7]
extend the kinematic region to much higher values of
W 2 >10 GeV2 toward the true DIS region Q2 ≫ 1 GeV2

and much higher values of −t. The cross section for
p(e, e′π+)n has also been measured above the resonance
region at the Cambridge Electron Accelerator (CEA) [8],
in p(e, e′π+)n and n(e, e′π−)p at the Wilson Synchrotron
Laboratory at Cornell [9–11] and DESY [12–16].

The longitudinal cross section σL is generally thought
to be well understood in terms of the pion quasi-elastic
knockout mechanism [17] because of the pion pole at
low −t . If true, this makes it possible to study the
charge form factor of the pion at momentum transfer
much bigger than in the scattering of pions from atomic
electrons [18]. On the other hand, the transverse cross
section σT is predicted to be suppressed by ∼ 1/Q2 with
respect to σL for sufficiently high values ofQ2 andW [19].
On the experimental side, however, the JLAB data show
that at forward angles σT is large. For instance, at
Q2 = 3.91 GeV2 [3] σT is by about a factor of two larger
than σL and at Q2 = 2.15 GeV2 it has same size as σL
in agreement with previous JLAB measurements [1].

There is a long standing issue concerning the reaction
mechanisms contributing to deeply virtual π electropro-
duction above the resonance region [20–22]. The models
which describe (e, e′π±) in terms of hadronic degrees of
freedom fail to reproduce σT observed in these reactions,

∗Electronic address: kaskulov@theo.physik.uni-giessen.de

see Ref. [4] and references therein. Previous measure-
ments [1, 2, 11] at smaller and much higher values of Q2

show a similar problem in the understanding of σT. Al-
ready from values of Q2 > 0.6 GeV2 the meson-exchange
and/or Regge pole models are not compatible with the
measured interference σTT and σLT cross sections and the
extraction of the pion form factor relies on the fit to the
longitudinal cross section σL only [5]. A remarkably rich
experimental data base obtained for N(e, e′π)N ′ above
the resonance region remains unexplained [3, 4]. On the
other hand, a detailed knowledge of the p(e, e′π+)n re-
action above the resonances

√
s > 2 GeV is mandatory

for the interpretation of the color transparency signal ob-
served in this reaction off nuclei [23, 24].
A possible description of σT at JLAB has been pro-

posed in Ref. [25]. The approach followed there is to
complement the hadron-like interaction types in the t-
channel, which dominate in photoproduction and low Q2

electroproduction, with the direct interaction of virtual
photons with partons followed by string (quark) fragmen-
tation into π+n. Then σT can be readily explained and
both σL and σT can be described from low up to high
values of Q2. In [25] the reaction p(e, e′π+)n is treated
as an exclusive limit, z → 1, of semi-inclusive DIS

p(e, e′π+)X
z→1−→ p(e, e′π+)n (1)

in the spirit of an exclusive-inclusive connection [26]. The
transverse cross section in n(e, e′, π−)p has been pre-
dicted to be smaller than in p(e, e′, π+)n. The model [27]
has also been applied to values of (Q2,W ) in the DIS re-
gion at HERMES [7]. In [27] σT in DIS gets much smaller
in the forward π+ production, but still dominates the off-
forward region.
However, in [25, 27] the transverse cross section σT it-

self was modeled and the solution of the problem on the
amplitude level is still missing. Both the soft hadronic
and hard partonic parts of the amplitude can in prin-
ciple interfere making non-additive contributions to σL
and to interference σTT and σLT cross sections. One
might describe this transverse strength in the language
of perturbative QCD by considering higher twist correc-
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tions to a generalized parton distribution (GPD) based
handbag diagram. This approach has been followed in
Ref. [28] where p(γ∗, π+)n is considered using the hand-
bag approach with a π-pole contribution. Indeed, the
data from JLAB demonstrate [3, 4] that the magnitude
and sign of the interference cross sections are not com-
patible with the simple exchange of a pion trajectory in
the t-channel. Because, the contributions from exchange
of heavy mesons are small [25] this would suggest the
presence of a large transverse resonance or partonic in-
terfering background to the meson-pole contributions.

In this work we attempt a phenomenological approach
to model the hard scattering or, using a duality argu-
ment, the presence of nucleon resonances beyond the
t-channel meson-pole amplitudes. The meson-exchange
processes dominate in high-energy photoproduction and
low Q2 electroproduction above the resonance region.
One way to describe this region is to assume that the co-
herent sum of baryon resonance contributions would be
expected by duality arguments to be equivalent to a sum
over t-channel Regge trajectories. However, in electro-
production, with plausible assumptions concerning the
coupling constants and transition form factors, the ex-
change of heavy mesons alone does not explain the trans-
verse cross section and turns out to be marginal [25]. It is
also a generic rule that single t-channel meson-exchange
processes vanish in the forward π+ direction. On the
other hand, pion exchange does play an important role at
near forward directions and must be included, as must be
the nucleon-pole charge term to satisfy gauge invariance.
The nucleon magnetic transitions vanish in the forward
production and can be neglected [29]. For instance, in
photoproduction this suggests an extreme phenomeno-
logical scenario, known as an electric model, where the
only relevant contributions to π± production at forward
angles are the ones from π-exchange and the nucleon
Born term where the inclusion of the latter is manda-
tory to conserve gauge invariance.

By reggeization of the π-exchange one takes into ac-
count higher mass and higher spin excitations. At for-
ward angles considered here the momentum transfer −t
is small and the exchanged π-trajectory is close to its
first materialization. However, the nucleons in the s(u)-
channel pole amplitudes are highly off-mass-shell and
with increasing values of (Q2,W ) the effect of nucleon
resonances should become more and more important.
This is because of the well known hardening of the higher
mass resonance transition form factors which must re-
spect the scaling properties of deep inelastic structure
functions in inclusive scattering [30, 31]. We shall follow
this suggestion and model the contribution of nucleon res-
onances using a local Bloom-Gilman connection between
the exclusive and inclusive processes.

Another question which we address here is a possible
contribution of the resonance (or partonic) background
to the longitudinal cross section σL which is presently
used to get the information about the pion form fac-
tor. Indeed, the same resonance/partonic background

γ

π

N’

reaction plane

scattering plane

z

e

e’

φ

FIG. 1: Exclusive reaction N(e, e′π)N ′ in the laboratory. φ
stands for the azimuthal angle between the electron scattering
(e, e′) plane and reaction N(γ∗, π)N ′ plane.

also affects the longitudinal cross section making the π-
pole dominance in the longitudinal response rather ques-
tionable. Based on a quantitative description of electro-
production data achieved in this work in a large range
of (Q2,W ) from JLAB to DIS region at HERMES the
present results may assist in the experimental analysis
and extraction of the pion charge form factor to mini-
mize systematic uncertainties. Recall that it is essential
to use theoretical model input for the extraction of the
pion form factor [5].
The outline of the present paper is as follows. In the

Section II we briefly recall the kinematics and definition
of the cross sections in exclusive (e, e′π±) electroproduc-
tion reaction. In Section III we discuss our treatment of
gauge invariant π-exchange in the Regge pole model. In
Section IV we consider the effect of nucleon resonances
and derive the transition form factors using an exclusive-
inclusive connection. In Section V we consider the con-
tribution of vector ρ(770) and axial-vector a1(1260) and
b1(1235) Regge trajectories. In Section VI we briefly dis-
cuss the π± photoproduction at forward angles. Then
the model is extended to electroproduction. In Sections
VII-IX the results are compared to the experimental data
from JLAB, DESY and Cornell. In Section X we compare
our results with the HERMES data. The Q2 behavior of
the cross sections is studied in Section XI. The polarized
beam-spin asymmetry and the role played by the axial-
vector mesons in (~e, e′π±) are discussed in Section XII. In
Section XIII the model predictions for JLAB at 12 GeV
are presented. The conclusions are summarized in Sec-
tion XIV. Some details of the calculations are relegated
to the Appendix.

II. KINEMATICS AND DEFINITIONS

We recall briefly the kinematics in exclusive π electro-
production

e(l) +N(p) → e′(l′) + π(k′) +N ′(p′), (2)
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and specify the notations and definitions of variables.
The reaction (2) in the laboratory is shown in Figure 1
where the target nucleon is at rest, the z-axis is directed

along the three momentum ~q = (0, 0,
√

ν2 +Q2) of the
exchanged virtual photon γ∗ with q = l − l′ = (ν, ~q),
Q2 = −q2, ν = Ee − E′e and l(l′) is the four momentum
of incoming (deflected) electrons. In Figure 1 φ stands
for the azimuthal angle between the electron scattering
(e, e′) plane and γ∗N → πN ′ reaction plane. φ is zero
when the pion is closest to the outgoing electron [32].
In exclusive reaction (e, e′π) we shall deal with an un-

polarized target and, both unpolarized and polarized lep-
ton beams. The differential cross section is given by

dσ

dQ2dνdtdφ
=

Φ

2π

[

dσT
dt

+ ε
dσL
dt

+
√

2ε(1 + ε)
dσLT
dt

cos(φ)

+ ε
dσTT

dt
cos(2φ)

+ h
√

2ε(1− ε)
dσLT′

dt
sin(φ)

]

, (3)

where dσT is the transverse cross section, dσL is the longi-
tudinal cross section, dσTT is the cross section originating
from the interference between the transverse components
of the virtual photon, dσLT is the cross section arising
from the interference between the transverse and longi-
tudinal polarizations of the virtual photon and dσLT′ is
the beam-spin polarized cross section resulting from the
interference between the transverse and longitudinal pho-
tons and helicity h = ±1 of the incoming electron.
The virtual photon flux is conventionally defined as [33]

Φ =
π

Ee(Ee − ν)

(

αe

2π2

Ee − ν

Ee

K
Q2

1

1− ε

)

, (4)

with αe ≃ 1/137, K = (W 2 −M2
N)/2MN and

ε =
1

1 + 2 ν2+Q2

4Ee(Ee−ν)−Q2

(5)

is the ratio of longitudinal to transverse polarization of
the virtual photon. The longitudinal/transverse (l/t)
separated virtual-photon nucleon cross sections are given
in Appendix A. The t-differential cross section for
N(γ∗, π)N ′ integrated over φ is denoted here as

dσU
dt

=
dσT
dt

+ ε
dσL
dt

. (6)

The longitudinal beam single-spin asymmetry (SSA)
in (~e, e′π) scattering is defined so that

ALU(φ) ≡
dσ→(φ) − dσ←(φ)

dσ→(φ) + dσ←(φ)
, (7)

where dσ→ refers to positive helicity h = +1 of the in-
coming electron. The azimuthal moment associated with
the beam SSA is given by [32]

A
sin(φ)
LU =

√

2ε(1− ε)dσLT′

dσT + εdσL
. (8)

III. GAUGING THE PION EXCHANGE

The diagrams describing the π+ and/or π− electro-
production amplitudes in exclusive reactions p(e, e′π+)n
and n(e, e′π−)p are shown in Figure 2. At high energies
the particles exchanged in the t-channel are understood
as the Regge trajectories. In p(e, e′π+)n the s-channel
nucleon-pole term (ib diagram) is added to the t-channel
π-pole exchange (ia diagram) to conserve the charge of
the system. Similarly, the diagram iia and the u-channel
nucleon-pole diagram iib form a gauge invariant ampli-
tude in n(e, e′π−)p. The last two diagrams (iii and iv)
correspond to the exchange of vector V = ρ(770) and
axial-vector A = a1(1260), b1(1235) Regge trajectories.

The π-exchange currents describing the reactions
p(γ∗, π+)n and n(γ∗, π−)p take the form [24]

−iJµ
s (γ
∗p→ π+n) =

√
2gπNN ūs′(p

′)γ5

[

Fγππ(Q
2, t)

(k + k′)µ

t−m2
π + i0+

+ Fs(Q
2, s, t)

(p+ q)σγ
σγµ +Mpγ

µ

s−M2
p + i0+

+ [Fγππ(Q
2, t)−Fs(Q

2, s, t)]
(k − k′)µ

Q2

]

us(p), (9)

−iJµ
u (γ
∗n→ π−p) = −

√
2gπNN ūs′(p

′)

[

Fγππ(Q
2, t)

(k + k′)µ

t−m2
π + i0+

−Fu(Q
2, u, t)

γµ(p′ − q)σγ
σ +Mpγ

µ

u−M2
p + i0+

+ [Fγππ(Q
2, t)−Fu(Q

2, u, t)]
(k − k′)µ

Q2

]

γ5us(p), (10)

where Fγππ(Q
2, t) denotes the transition form factor of the pion and Fs(u)(Q

2, s(u), t) stands for the proton s(u)-

channel transition form factor. In Eqs. (9) and (10) gπNN = 13.4 is the pseudoscalar πN coupling constant, t = k2,
s =W 2, k = k′ − q = p− p′ and other notations are obvious.
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FIG. 2: The diagrams describing the π+ and/or π− electroproduction amplitudes in exclusive reactions p(e, e′π+)n and
n(e, e′π−)p. In p(e, e′π+)n the s-channel nucleon-pole term (ib diagram) is added to the t-channel π-pole exchange (ia di-
agram) to conserve the charge of the system. Similarly, the diagram iia and the u-channel nucleon-pole diagram iib form gauge
invariant amplitude in n(e, e′π−)p. The last two diagrams (iii and iv) correspond to the exchange of vector V = ρ(770) and
axial-vector A = a1(1260) and b1(1235) Regge trajectories. The momentum flows are shown in the diagram ia.

The amplitudes are gauge invariant and the current conservation condition, qµJ
µ
s(u) = 0, is satisfied in the presence

of different form factors, Fγππ and Fs(u), which in general can depend on values of (Q2, s(u), t). Eqs. (9) and (10) are
obtained using the requirement that the modified electromagnetic vertex functions entering the amplitude obey the
same Ward-Takahashi identities as the bare ones [34–36]. Further aspects concerning the gauged electric amplitude
are relegated to Appendix B.
At high energies the exchange of high-spin and high-mass particles lying on the π-Regge trajectory has to be taken

into account. Then, to continue the electric amplitude to high energies we define the half off-shell form factor

Fγππ(Q
2, t) = Fγππ(Q

2)(t−m2
π)R(απ(t)). (11)

In the π-pole term this procedure replaces the Feynman propagator by the Regge propagator suggested by the high
energy limit of the amplitude

D(t) =
1

t−m2
π + i0+

=⇒ R(απ(t)) =

[

1 + e−iπαπ(t)

2

]

(−α′π) Γ[−απ(t)]e
απ(t) ln(α

′
πs), (12)

where απ(t) = α′π(t −m2
π) is the Regge trajectory of π with a slope α′π = 0.74 GeV−2 and Γ function results from

suppression of singularities in the physical region. Close to the pole position t → m2
π the Regge propagator is reduced

to 1/(t−m2
π) and we approach the Feynman amplitude describing the first π(140) materialization of the trajectory.

We further treat the nucleon-pole part as an indispensable part of the π-pole amplitude. At the real photon point
gauge invariance requires for the nucleon-pole term the same phase and t-dependence as in the π-Regge amplitude [29]

Fs(u)(Q
2, s(u), t) = Fs(u)(Q

2, s(u))(t−m2
π)R(απ(t)). (13)

This assumption is justified by the observation that there exists a gauge where the π-exchange vanishes and the π-pole
contribution is generated kinematically by the nucleon-pole term itself [37].

For the pion transition form factor Fγππ we use a
monopole parameterization

Fγππ(Q
2) = [1 +Q2/Λ2

γππ]
−1, (14)

with a cut-off Λγππ as a fit parameter. In general, the cut-
off can be a function of t, Λγππ = Λγππ(t), reflecting the
off-shellness of the pion in the t-channel and the underly-
ing space-time pattern of direct partonic interactions at

high values of −t [38]. In the forward π+ production the
momentum transfer t is rather small and the exchanged
pion is close to its mass shell. In the fit to data we shall
not allow large deviations from the VMD value.

Since the π-pole contribution is replaced by an ex-
change of reggeon-pion, the relation to the on-shell pion
form factor might be lost [39] and Fγππ(Q

2) should be
understood as an effective transition form factor.
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IV. EFFECT OF NUCLEON RESONANCES

Similar arguments should apply to the transition form
factor in the s(u)-channel nucleon-pole terms. A simplest
choice would be to use in Eq. (13)

Fs(u)(Q
2, s(u)) = F p

1 (Q
2), (15)

where F p
1 (Q

2) is the proton Dirac form factor. However,
since the nucleon is highly of-mass-shell this assumption
might be too naive [40]. Indeed, this prescription un-
derestimates the JLAB data for σT [25] and results in a
wrong interference pattern between l/t components.
A way to model an intermediate state which is highly

off-mass-shell is to increase the Fock space available for
the virtual nucleon allowing the latter to excite into res-
onances. Similar to the reggeized-exchange, these res-
onances with higher masses and spins may lie on the
nucleon Regge trajectory or correspond to higher mass
states with the same angular momentum as the nucleon.
We replace the Born term in the s-channel for π+ pro-
duction by a sum over all resonance excitations

Fs(Q
2,Mp)

s−M2
p + i0+

→
∑

i

r(Mi)c(Mi)
F (Q2,M2

i )

s−M2
i + i0+

, (16)

where the sum runs from the nucleon-pole contribution,
Mi is the ith resonance mass, r and c are the electro-
magnetic and strong couplings, respectively, relative to
the lowest lying nucleon state, e.g. r(Mp)c(Mp) = 1.
For π− production we use a similar expansion over the
u-channel contributions

Fu(Q
2,Mp)

u−M2
p + i0+

→
∑

i

r(Mi)c(Mi)
F (Q2,M2

i )

u−M2
i + i0+

. (17)

In the region of interest for the experiments to be dis-
cussed later in this paper the invariant mass is W >∼ 2
GeV and thus in a region where the DIS regime starts. In
order to make a connection to our earlier work in which
we modeled the transverse cross section by a partonic
subprocess [25, 27] we now invoke duality for the exclu-
sive processes treated here. We start with the Bloom-
Gilman duality [31] in the local form

F p
2 (xB, Q

2) =
∑

i

(M2
i −M2

p +Q2)W (Q2,Mi)δ(s−M2
i ),

(18)
where xB stands for a Bjorken scaling variable and the
deep inelastic structure function F p

2 (xB, Q
2) is expressed

as a sum of resonances. In Eq. (18) the hadronic basis
is used as a substitute for the quark basis. When Q2 is
large the bulk structure of the resonances becomes less
and less important and we are justified when taking the
zero-width approximation [41]. W (Q2,Mi) defines the
ith resonance contribution to the γ∗p forward scattering
amplitude; it is essentially the electromagnetic coupling
constant r(Mi) times a resonance form factor F (Q2,Mi)
normalized to unity at Q2 = 0 [42]:

W (Q2,Mi) = r2(Mi)[F (Q
2,Mi)]

2, F (0,Mi) = 1. (19)

A resonance with mass Mi contributes to the structure
function at Bjorken xi = Q2/(M2

i −M2
p +Q2).

To be in line with measurements in the DIS region the
resonance form factors F (Q2,M2

i ) must fall with Q2 at
least as fast as the nucleon dipole form factor. Futher-
more, to be consistent with the scaling behavior of deep
inelastic structure functions the cut-off in the dipole tran-
sition form factors must increase as the mass of the res-
onance is increases [30, 42]. Therefore we assume [41]

F (Q2,M2
i ) =





1

1 + ξ Q2

M2
i





2

, (20)

where the value of ξ is a common average cut-off param-
eter. This scenario suggests a hardening of the resonance
form factors with increasing value of Mi [42].
At high energies the level density of resonances ρ(M2

i )
is large and we can replace the sum in Eq. (18) over
discrete spectrum of resonances by a continuous integral

∑

i

→
∞
∫

M2
p

dM2
i ρ(M

2
i ). (21)

This is clearly a rough approximation in the resonance
region itself, but it makes no difference when we restrict
ourselves to the experimental data above the resonance
region. Performing the integration over Mi yields

F p
2 (xB, Q

2) = (s−M2
p +Q2)r2(s)[F (Q2, s)]2ρ(s). (22)

The structure function F p
2 can be written in the form

of a polynomial in 1 − 1/ω′ where ω′ = 1 +W 2/Q2 is a
Bloom-Gilman variable. As Q2/W 2 → ∞ or ω′ → 1 the
leading term yields the Drell-Yan-West behavior

F p
2 (ω

′) ∝ (ω′ − 1)3, (23)

which shows that the power law behavior of the form fac-
tor is related to the suppression of the structure functions
in the limit where one quark carries all of the hadron’s
momentum. The approximation (23) is supposed to be
reasonable down to xB ≃ 0.2. Expanding the resonance
form factors for ω′ → 1 the leading term reads

F (Q2, s) =
(ω′ − 1)2

ξ2
+O((ω′ − 1)3). (24)

The duality relation, Eq. (22), can be written in the form

(ω′ − 1)
3 ∝ Q2 (ω

′ − 1)4

ξ4
r2(s)ρ(s). (25)

This translates into

r2(s)ρ(s) ∝ 1

Q2(ω′ − 1)
=

1

s
. (26)

Since the level density grows with increasing s, for in-
stance, ρ ∝ exp(const × Mi), the coupling strength to
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resonances is decreasing, i.e, r(si) ∝ (siρ(si))
−1/2 where

si = M2
i . This simple result has a remarkable conse-

quence. Although an infinite tower of resonances can
contribute to the structure function the weight of reso-
nances decreases as 1/s with increasing value of s.
A vanishing coupling of the higher spin (mass) reso-

nances to πN is expected from the chiral phenomenol-
ogy [43]. The latter claim is consistent with our observa-
tion that the more we excite the nucleon the less it decays
into the exclusive channel. Assuming for the strong cou-

pling a similar form c(si) ∝ (s
(2β−1)
i ρ(si))

−1/2 with β ≥ 1
the integration in Eqs. (16) and (17) is superconvergent
and can be carried out analytically. Without an explicit
assumption about the behavior of the level density we
get the following form for the product

ρ(si) r(si)c(si) =
1

λ
s−βi , (27)

where λ is a normalization constant and β ≥ 1 accounts
for the behaviour of coupling constants as well as a de-
viation of the level density contributing to the exclusive
channel compared to the total inclusive density of states.
We now absorb all the effects of the higher lying reso-

nances into the nucleon-pole term by setting

∑

i

r(Mi)c(Mi)
F (Q2,M2

i )

s−M2
i + i0+

=⇒

∞
∫

M2
p

dM2
i ρ(M

2
i )r(M

2
i )c(M

2
i )

F (Q2,M2
i )

s−M2
i + i0+

=

∞
∫

M2
p

dsi
s−βi

λ

F (Q2, si)

s− si + i0+
≡ Fs(Q

2, s)

s−M2
p + i0+

, (28)

where the sum in Eq. (16) over discrete spectrum of reso-
nances has been replaced again by a continuous integral.
Fs(Q

2, s) is the form factor on the r.h.s. of Eq. (13). Sim-
ilarly we proceed for the transition form factor Fu(Q

2, u)
in the u-channel, Eq. (17). The integration covers the
full region from the nucleon pole Mp up to ∞. Further-
more, the normalization constants λ are determined by
the charge conservation at the real photon point Q2 = 0,
i.e.

λ
∣

∣

∣

s−channel
= (s−M2

p )

∞
∫

M2
p

dsi
ρ(si) r(si)c(si)

s− si + i0+
, (29)

λ
∣

∣

∣

u−channel
= (u−M2

p )

∞
∫

M2
p

dsi
ρ(si) r(si)c(si)

u− s2i + i0+
, (30)

for the s- and u-channels, respectively. This merely guar-
antees that the effective form factors are normalized to
unity, e.g. Fs(u)(0, s(u)) = 1. With this prescription we
demand that the contributions of resonances show up in
the modified off-mass-shell behavior of the nucleon tran-
sition form factors.

The s- and u-channel form factors read

Fs(Q
2, s) =

∞
∫

M2
p

dsi
s−βi

s− si + i0+

(

1

1 + ξQ2

si

)2

∞
∫

M2
p

dsi
s−βi

s− si + i0+

, (31)

Fu(Q
2, u) =

∞
∫

M2
p

dsi
s−βi

u− si + i0+

(

1

1 + ξQ2

si

)2

∞
∫

M2
p

dsi
s−βi

u− si + i0+

, (32)

Because of the singularity at si = s + i0+ the s-channel
integrals develop an imaginary part which is missing in
the u-channel contribution where the branch point sits
in the unphysical region.
Concerning the terminology for regions like the one at

JLAB it would be appropriate to use the words reso-
nance effect. On the other hand, in the DIS region at
HERMES it would be more natural to describe the ef-
fect as of partonic origin. Since both descriptions are
dual in the context of the present approach we shall in
line of [25, 27] refer to the terms derived above as the
resonance/partonic (r/p) contributions.

V. VECTOR AND AXIAL-VECTOR REGGE

TRAJECTORIES

The mesonic Regge trajectories can be characterized
by the signature and parity. The signature determines
whether the Regge poles in the scattering amplitude will

0 1 2 3 4 5 6

t [GeV
2
]

0

1

2

3

4

5

6

α 
(t

)

ρ1
− −

ρ3
− −

ρ5
− −

π0
− +

π2
− +

π4
− +

b
1

+ -

b
3

+ -

a
1

+ +

a
3

+ +

a
2

+ +

a
4

+ +

FIG. 3: (Color online) ρ(770)/a2(1320) (solid), π/b1(1235)
(dashed) and a1(1260) (dash-dotted) Regge trajectories.
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occur for even or odd positive integer value of the tra-
jectory α(t) = J (the spin). The leading mesons con-
tributing to (e, e′π±) are the natural P = (−1)J parity
vector ρ(770) and the unnatural P = (−1)J+1 parity
axial-vector mesons a1(1260) and b1(1235). The Regge
trajectories α(t) considered here are shown in Figure 3
The absolute contribution of the reggeized ρ-exchange

amplitude to (e, e′π±) turns out to be small, but by
its interference with the s- and u-channel terms consid-
ered above, it is responsible for the π−/π+ asymmetry in
photoproduction and gives a sizable contribution to the
π−/π+ ratio in electroproduction.
In the axial-vector sector, the experimental isolation

of the amplitudes with axial-vector quantum numbers
would be of great interest. For instance, using a proton
target polarized perpendicular to the reaction plane, and

photons polarized parallel to the reaction plane, one can
directly access the difference between recoil and the po-
larized target asymmetries which is proportional to the
exchange of the a1(1260)-trajectory [44]. However, being

suppressed by the Regge factor ∼ e−α
′
a1

ln(α′
a1

s)m2
a1 at

t = 0, its contribution to the forward unpolarized cross
section turns out to be small. With our choice of the
b1NN tensor coupling the contribution of b1(1235) ex-
change is even smaller. On the other hand, as we shall
see, it is absolutely essential to consider the exchange
of a1(1260) Regge trajectory in the polarization (~e, e′π)
observables like the beam spin azimuthal asymmetry con-
sidered in the following. Other aspects related to a pos-
sible role of a1(1260) in (e, e′π) are discussed in [45].

A. Vector-isovector IG(JPC) = 1+(1−−) exchange currents

The currents Jµ
ρ describing the exchange of the natural parity ρ(770)-meson Regge trajectory are given by





−iJµ
ρ (γ
∗p→ π+n)

−iJµ
ρ (γ
∗n→ π−p)



 = −i
√
2Gργπ GρNNFργπ(Q

2)εµναβqνkαūs′(p
′)

[

(1 + κρ)γβ − κρ
2Mp

(p+ p′)β

]

us(p)

×
[

1− e−iπαρ(t)

2

]

(

−α′ρ
)

Γ[1− αρ(t)]e
ln(α′

ρs)(αρ(t)−1) (33)

where GρNN = 3.4 and κρ = 6.1 are the standard vector and anomalous tensor coupling constants, respectively. The
ρ-trajectory adopted here reads αρ(t) = 0.53+α′ρt with a slope α′ρ = 0.85 GeV−2. The Γ function in (33) contains the

pole propagator ∼ 1/ sin(παρ(t)) but no zeroes and the amplitude zeroes only occur through the factor 1− e−iπαρ(t).

The ργπ coupling constants Gργπ can be deduced from the radiative γπ decay widths of ρ

Γ(ρ± → γπ±) =
αe

24

G2
ργπ

m3
ρ

(

m2
ρ −m2

π

)3
. (34)

The measured width [46]: Γρ±→γπ± = (68 ± 7) keV, where the central value corresponds to Gργπ = 0.728 GeV−1.
For the transition form factor Fργπ(Q

2) we use a VMD model Fργπ(Q
2) = (1 +Q2/Λ2

ργπ)
−1 with Λργπ = mω(782).

B. Axial-vector IG(JPC) = 1−(1++) exchange currents

The axial-vector a1(1260) meson with IG(JPC) = 1−(1++) has a large width into the a1(1260)
± → γπ± channel [46].

A conversion of a1 into γπ is described by the a1γπ vertex La1γπ = −ie
4 Ga1γπF

µν〈Q[Aµν , ϕ]〉 where Fµν denotes the
field tensor of photons, Aµν stands for the field tensor of the axial-vector meson with Aµν = ∂µAν − ∂νAµ and

Aµ =

(

a01
√
2a+1√

2a−1 −a01

)

µ

. (35)

ϕ is a standard SU(2) pion matrix, Q = diag(2/3,−1/3) is a quark charge matrix, 〈..〉 and [..] denote a trace and a
commutator of fields. The hadronic a1NN interaction is described by

La1NN = Ga1NN ψ̄γ
µγ5Aµψ, (36)

where ψ = (p, n)T. Because of G-parity conservation in the vertex there is no tensor coupling of a1 to nucleons.
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In the reactions p(γ∗, π+)n and n(γ∗, π−)p the currents describing the exchange of a1(1260) trajectory read





−iJµ
a1
(γ∗p→ π+n)

−iJµ
a1
(γ∗n→ π−p)



 =





+

−





√
2Ga1NNGa1γπFa1γπ(Q)

[

kµqν − (qk)gµν
]

ūs′(p
′)γνγ5us(p)

×
[

1− e−iπαa1 (t)

2

]

(

−α′a1

)

Γ[1− αa1(t)]e
ln(α′

a1
s)(αa1 (t)−1), (37)

The a1 Regge trajectory adopted here is αa1(t) = αρ(t)−1 where αρ(t) is the trajectory of ρ. The γ∗ → a1π transition
is isovector and contributes with opposite signs to γ∗p→ π+n and γ∗n→ π−p reactions.
To estimate the a1-nucleon coupling constant Ga1NN one can relate say Ga1pp to the observed axial-vector coupling

constant using axial-vector dominance [47, 48] gA
gV

=
√
2fa1Ga1pp

m2
a1

, where the weak decay constant fa1 is deduced

from τ decay: τ → a1 + ντ . With gA/gV = 1.267, fa1 = (0.19 ± 0.03) GeV2 one gets the following estimate
Ga1pp = Ga1NN = 7.1± 1.0.
The radiative decay width a1 → γπ is given by

Γa+
1→γπ+ =

αe

24

G2
a1γπ

m3
a1

(m2
a1

−m2
π)

3, (38)

The empirical width a+1 → γπ+ is Γa+
1→γπ+ ≃ (640 ± 246) keV [46]. The coupling constant Ga1γπ ≃ 1.1 GeV−1

corresponds to the central value. In a VMD picture a conversion of γ to ρ with subsequent a1ρπ interaction generates
the monopole form factor Fa1γπ(Q

2) = (1 +Q2/Λ2
a1γπ)

−1 with Λa1γπ = mρ(770). This form is used to model the Q2

dependence of the a1γ
∗π vertex.

C. Axial-vector IG(JPC) = 1+(1+−) exchange currents

We consider the exchange of b1(1235) axial-vector meson with IG(JPC) = 1+(1+−). The conversion of b1 → γπ is

described by the vertex Lb1γπ =
eGb1γπ

4 Fµν〈Q{Bµν , ϕ}〉, where {..} anti-commutes and Bµν = ∂µBν − ∂νBµ with

Bµ =

(

b01
√
2b+1√

2b−1 −b01

)

µ

. (39)

The b1(1235) coupling to nucleons takes the form of axial-tensor interaction

Lb1NN = i
Gb1NN

4MN
ψ̄σµνγ5Bµνψ. (40)

where σµν = i
2 [γ

µ, γν ]. The hadronic currents −iJµ
b1

describing the exchange of b1(1235) Regge trajectory read





−iJµ
b1
(γ∗p→ π+n)

−iJµ
b1
(γ∗n→ π−p)



 =

√
2

3

Gb1NN

2MN
Gb1γπFb1γπ(Q)

[

kµqν − (qk)gµν
]

(p+ p′)ν ūs′(p
′)γ5us(p)

×
[

1− e−iπαb1
(t)

2

]

(

−α′b1
)

Γ[1− αb1(t)]e
ln(α′

b1
s)(αb1

(t)−1). (41)

The radiative decay width of b±1 → γπ± is Γb±1 →γπ± = (230 ± 60) keV [46]. Making use of an expression similar to

Eq. (38) one gets Gb1γπ/3 = 0.647 GeV−1. The π and b1(1235) Regge trajectories are nearly degenerate (dashed
curve if Figure 3). Therefore we assume αb1(t) = απ(t). In the b1γ

∗π vertex we use the VMD form factor Fb1γπ(Q
2) =

(1 +Q2/Λ2
b1γπ

)−1 with Λb1γπ = mω(782).

It was proposed [29] that the polarized photon asym-
metry in p(γ, π0)p reaction at high energies can be used
to estimate the product of the b1 electromagnetic and

strong coupling constants. In [29] the b01(1235) is cou-
pled to the axial-vector current and the axial-tensor in-
teraction has been neglected. However, the axial-vector
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FIG. 4: (Color online) −t dependence of the transverse dσT/dt (left panel) and longitudinal dσL/dt (right panel) differential
cross sections in exclusive reaction p(γ∗, π+)n. The compilation of JLAB and old DESY data are from Ref. [4] and have been
scaled to common values of W = 2.19 GeV and Q2 = 0.7 GeV2. The solid curves describe the model results which include
the effect of resonances and exchange of π/b1(1235), ρ(770)/a2(1320) and a1(1260) Regge trajectories. The same is true for
the dash-dash-dotted curves but without the DIS slope of Eq. (45). The dashed curves correspond to the contribution of the
π-reggeon exchange only. The dash-dotted curves describe the model results which include the exchange of Regge trajectories
and on-mass-shell parameterization of the proton Dirac form factor.

γµγ5 vertex is C-parity even and can not couple to the
b01(1235)-meson which has negative C-parity. This is op-
posed to the a1(1260) which couples to γµγ5. By C(G)-
parity only a tensor b1NN coupling, Eq. (40), is possible.
We have checked and found that with the proper b1NN
vertex this extraction is not obvious. With the tensor in-
teraction the exchange of the b1(1235) trajectory is neg-
ligibly small and can be readily neglected. For instance,
using Gb1NN = Ga1NN or even increasing considerably
the latter value does not produce any noticeable effects
on the observables considered here.

VI. ELECTROPRODUCTION ABOVE THE

RESONANCE REGION

In this section we demonstrate the resonance interpre-
tation proposed in this work and fix the model parame-
ters using the JLAB data. At first, we briefly consider
the real photon limit of the Regge amplitudes at high
energies. In π+ and π− photoproduction at very forward
angles the reggeized electric amplitudes, see Eqs. (9) and
(10), are supposed to be dominant. Since the vector and
axial-vector meson-exchange contributions vanish at for-
ward angles, Eqs. (9) and (10) are parameter free, pro-
vided the intercept of the π-trajectory and the gπNN cou-
pling constant are fixed. However, further assumptions
concerning a choice of the phases in the Regge amplitudes

have to be made. In the gauged π-Regge amplitudes,
Eqs. (9) and (10), an assumption concerning an exact
degeneracy of π and axial-vector b1(1235) Regge trajec-
tories with a choice of rotating phase in π+ and a constant
phase in π− photoproduction yields a remarkable consis-
tency with data [29]. The degeneracy of ρ(770)/a2(1320)
Regge trajectories and G-parity arguments result in a ro-
tating phase in π+ and a constant phase in π− production
described by the ρ-exchange amplitude, Eq. (33). Here,
to be consistent with the real photon limit, we follow
these assumptions [29]. However, in the high-Q2 elec-
troproduction a particular choice of phases in the Regge
amplitudes is of minor importance. The virtual photon
(γ∗, π±) results presented here can be well reproduced
with the standard Regge propagators. From the meson
spectrum there is no conclusive evidence that a leading
Regge trajectory for an unnatural parity ρ2 state exists.
Therefore, we do not make any assumptions on a degen-
eracy pattern of a1(1260).
The resulting Regge model based on reggeized gauge

invariant Feynman amplitudes describes the high energy
π± photoproduction data relevant for the present studies
reasonably well. These include the differential cross sec-
tions above the resonance region, the π−/π+ ratio of the
n(γ, π−)p and p(γ, π+)n differential cross sections and
polarized photon asymmetries. Our description of pho-
toproduction data is quantitatively similar to the results
of Ref. [29] and we do not repeat this comparison with
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FIG. 5: (Color online) The Q2 dependence of the absolute
value of the transition form factor |Fs(Q

2, s)| (dashed curve),
Eq. (43), at

√
s = 2.2 GeV. The solid curve describes the

proton Dirac form factor, Eq (42), in comparison with data.

experimental data here.
An extension of the model to electroproduction is

straightforward provided the Q2-dependent transition
form factors are defined. In Figure 4 we plot the trans-
verse dσT/dt (left panel) and longitudinal dσL/dt (right
panel) π+ electroproduction data from JLAB and DESY
(old data) scaled to the same values of Q2 = 0.7 GeV2

and W = 2.19 GeV [4]. The value of the momentum
cut-off Λγππ in the pion form factor, Eq. (14), is largely
constrained by the magnitude of dσL/dt at forward an-
gles. In the following the JLAB data are considered to be
a guideline for fixing the model parameters. The dashed
curves correspond to Λ2

γππ = 0.46 GeV2 and describe
the contribution of the π-reggeon exchange only. The
exchange of π dominates in dσL/dt at forward angles.
However, in dσT/dt the π-exchange is not compatible
with data and also vanishes in the forward direction.

The dash-dotted curves correspond to the gauged electric
model with the on-shell Dirac form factor, see Eq. (15),

F p
1 (Q

2) =
Gp

E(Q
2)/Gp

M (Q2) +Q2/4M2
p

1 +Q2/4M2
p

Gp
M (Q2), (42)

and exchange of ρ(770)/a2(1320) and a1(1260) Regge
trajectories. In Eq. (42) the electric form factor Gp

E
decreases linearly as a function of Q2 with respect to
the magnetic form factor Gp

M with a node around Q2
0 ≃

8 GeV2 [49] provided µpG
p
E/G

p
M = 1 − Q2/Q2

0. On the
other hand up to ≃ 5 GeV2 the magnetic form factor is a
dipole Gp

M = µp/(1 + Q2/0.71GeV2)2 where µp = 2.793
is the magnetic moment of the proton.

As one can see, this model (dash-dotted curves)
with the nucleon-pole (gauge invariance), vector and
axial-vector meson-exchange Regge trajectories describes
dσL/dt well and grossly underestimates dσT/dt. Varia-
tions of the cut-offs in the vector and axial-vector meson
transition form factors do not improve the description.
This preliminary comparison with data shows that being
consistent with photoproduction the above simple exten-
sion of the Regge model to electroproduction is not able
to describe the data already at values of Q2 as low as
Q2 ≃ 1 GeV2. The discrepancies with data increase with
increasing value of Q2 [4].

Next, consider the resonance contributions using the
transition form factors as defined in Eq. (31). We have
two parameters at hand: the parameter β which is related
to the level density of states and a parameter ξ describ-
ing the average cut-off in the resonance transition form
factors. All the exclusive p(γ∗, π+)n and n(γ∗, π−)p elec-
troproduction data considered in this work from JLAB,
DESY and Cornell to DIS region at HERMES can be
well described by the choice β = 3 and ξ = 0.4. The
formulae for the transition form factors given in (31) and
(32) can be integrated and yield (for β = 3)

Fs(Q
2, s) =

s ln

[

ξQ2

M2
p

+ 1

]

(2ξQ2 + s)

(ξQ2)2
− s(ξQ2 + s)

ξQ2 (ξQ2 +M2
p )

+ ln

[

s−M2
p

M2
p

]

− iπ

(

ξQ2

s
+ 1

)2
(

s2 + 2sM2
p

2M4
p

+ ln

[

s−M2
p

M2
p

]

− iπ

) , (43)

Fu(Q
2, u) =

u ln

[

ξQ2

M2
p

+ 1

]

(2ξQ2 + u)

(ξQ2)2
− u(ξQ2 + u)

ξQ2 (ξQ2 +M2
p )

+ ln

[

M2
p − u

M2
p

]

(

ξQ2

u
+ 1

)2
(

u2 + 2uM2
p

2M4
p

+ ln

[

M2
p − u

M2
p

]) . (44)

In Figure 5 we plot the Q2 dependence of the absolute value of the transition form factor |Fs(Q
2, s)| (dashed
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Regge Parameters p(γ∗, π+)n n(γ∗, π−)p Regge trajectory

exchange αi(t) = α0
i + α′

i t

π(140)/b1(1235) gπNN = 13.4 +e−iπαπ(t) 1 απ(t) = α′
π(t−m2

π)

α′
π = 0.74

GρNN = 3.4

ρ(770)/a2(1320) κρ = 6.1 −e−iπαρ(t) 1 αρ(t) = 0.53 + 0.85t

Gργπ = 0.728 GeV−1

Λργπ = mω(782)

Ga1NN = 7.1

a1(1260) Ga1γπ = 1.1 GeV−1 1−e
−iπαa1 (t)

2
1−e

−iπαa1 (t)

2
αa1(t) = αρ(t)− 1

Λa1γπ = mρ(770)

απ(t)

Resonances β = 3, ξ = 0.4 +e−iπαπ(t) 1 with α′
π → α′

π

1+a
Q2

W2

a = 2.4

TABLE I: A summary table of a model parameters. See the text for the details.

curve) atW =
√
s = 2.2 GeV in comparison with the on-

shell parameterization of the proton’s Dirac form factor
F p
1 (Q

2) Eq. (42) (solid curve). It is clearly seen that Fs

is considerably harder than F p
1 . This difference reflects

the influence of the higher lying resonances.
There is an additional effect which we would like to

take into account. In Refs. [25, 27] it has been observed
that in exclusive reaction (e, e′π+) the slope of partonic
contributions which is driven by the intrinsic transverse
momentum distribution of partons slightly decreases with
increasing value of Q2. Since in our present description
the contribution of resonances is dual to direct partonic
interaction we accommodate this anti-shrinkage effect in
the transition form factors Fs(u), see Eq. (13), using the
slope parameter

α′π → α′π

1 + a Q2

W 2

, (45)

with a ≃ 2.4. This behavior has been found from the fit
to the (Q2,W ) dependence of the transverse partonic DIS
slope of [25, 27]. Eq. (45) is effective in electroproduc-
tion and in the resonance transition form factors Fs(u),
Eq. (13), only. For real photons the phase of Fs(u) is that
of Fγππ and a proper Regge limit of [29] is guaranteed.
Then using the r/p-transition form factor, Eq. (43),

the transverse cross section dσT/dt gets large (solid
curve) in agreement with JLAB data, see Figure 4. The
effect of resonances is much smaller in the longitudinal
response dσL/dt but it improves the description of data
at higher values of −t. As we shall see, the same effect
will strongly influence the interference cross sections and
allow to explain both the sign and magnitude of dσTT/dt
and dσLT/dt. The solid curves include the effect of the
DIS slope, Eq. (45). The dash-dash-dotted curves corre-
spond to the results without Eq. (45); the effect is rather
small at forward angles and could be partially absorbed
in a redefinition of ξ. To be in line with [25, 27] we keep

this phenomenological behavior.
The model parameters are summarized in Table I.

The Regge phase pattern discussed above and used in
the calculations is also shown for different reggeon ex-
change contributions. The cut-off Λγππ in the pion form
factor, Eq. (14), is a fit parameter. From the fit to
the longitudinal data we observe essentially three re-
gions. At small values of Q2 < 0.4 GeV2 the model
results are remarkably consistent with a VMD value of
Λ2
γππ = m2

ρ(770) ≃ 0.59 GeV2. The intermediate region

0.6 < Q2 < 1.5 GeV2 in Fπ-1 experiment [2] demands
somewhat smaller value of Λ2

γππ ≃ 0.4 GeV2. In the

deep (Q2,W ) region the JLAB, Cornell and DESY data
can be well described using Λ2

γππ ≃ 0.46 GeV2. In our
calculations we shall follow these prescriptions for Λγππ.

VII. JLAB Fπ-1, Fπ-2 AND π-CT DATA

In this section we study the r/p-effects in partial π+

electroproduction cross sections measured at JLAB. We
compare the model results with the differential cross sec-
tions in the p(γ∗, π+)n reaction from the Fπ-1 [2], Fπ-
2 [1] and π-CT [3] experiments. At JLAB the reaction
n(γ∗, π−)p has been also measured off the deuteron tar-
get and π− data will be soon reported [50].
In Figure 6 we show our results for the p(γ∗, π+)n reac-

tion together with the high-Q2 data from [1, 3]. The data
points in each (Q2,W ) bin correspond to slightly differ-
ent values of Q2 and W for the various −t bins. The
numbers displayed in the plots are the average (Q2,W )
values. For simplicity we perform the calculations for
values of (Q2,W ) corresponding to the first −t bin. A
proper binning of the curves does not change much the
results [25].
At first, we consider again the reggeized π-exchange

only. The value of the cut-off in the pion from factor is
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the exchange of the π-Regge trajectory alone. The dash-dotted curves are obtained with the on-mass-shell form factors in the
nucleon-pole contribution and exchange of the ρ(770)/a2(1320)-trajectory. The solid curves describe the model results with
the resonance contributions. The data points in each (Q2,W ) bin correspond to slightly different values of Q2 and W for the
various −t bins. The calculations are performed for values of Q2 and W corresponding to the first −t bin. The histograms for
dσT/dt are the results from [25].
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Λ2
γππ = 0.46 GeV2. In Figure 6 the dashed curves de-

scribe this contribution. As one can see, the steep fall
of dσL/dt away from forward angles comes entirely from
the rapidly decreasing π-exchange amplitude. The π-
exchange practically saturates the longitudinal response
dσL/dt. At these values of Q2 > 1.5 GeV2 the contri-
bution of the π-reggeon exchange to the transverse cross
section dσT/dt is already marginal. The π-exchange is
effective in the interference cross sections. However, ex-
perimentally the cross section dσTT/dt is negative and
dσLT/dt is positive. The exchange of π contributes here
just with opposite signs.

We gauge the π-exchange by adding the nucleon-pole
term. The exchanges of ρ(770)/a2(1320) and a1(1260)
Regge trajectories are also added. This result corre-
sponds to the dash-dotted curves in Figure 6. As one
can see, the longitudinal cross sections dσL/dt is barely
changed. The transverse cross section dσT/dt is negligi-
bly small but finite at forward angles. The sign of the
interference cross section dσTT/dt now respects the ex-
perimental data but the magnitude of the cross section
is compatible with zero. The cross section dσLT/dt has
been increased by about a factor of two but is still largely
negative.

In the last step we use the r/p-transition form fac-
tor to include the effect of resonances. The solid curves
in Figure 6 correspond to this description. As one can
see, all the cross sections are now very well described.
Furthermore, the magnitude of dσT/dt is strongly corre-
lated with the sign and magnitude of the interference
cross sections dσTT/dt and dσLT/dt. The description
of dσT/dt translates at once into a remarkable descrip-
tion of both interference cross sections. For instance,

dσLT/dt changes sign to positive and dσTT/dt gets large
and negative. The contribution of resonances to the lon-
gitudinal cross section dσL/dt is sizable at forward an-
gles where the pion form factor is extracted [5] and in-
creases with increasing value of Q2. However, the ef-
fect is particularly pronounced in dσT/dt and interfer-
ence cross sections dσTT/dt and dσLT/dt. For instance,
at Q2 = 2.45 GeV2 and Q2 = 3.91 GeV2 dσT/dt has
been increased by about two orders of magnitude.

The histograms in Figure 6 for dσT/dt are from [25].
The assumption used in Ref. [25] for γ∗p → π+n is that
at the invariant masses reached at JLAB nucleon reso-
nances can contribute to the 1π channel as well. Then
similar to the use of Regge trajectories in the t-channel
that takes higher meson excitations into account one has
to consider the direct hard interaction of virtual pho-
tons with partons (DIS) since DIS involves all possible
transitions of the nucleon from its ground state to any
excited state [51]. Modeling the resonance contributions
by DIS like processes, followed by hadronization into the
π+n channel, result in histograms shown in Figure 6.
Our present treatment of resonance contributions pro-
duces a result which is very close to that obtained in
our previous work [25]. However, the present approach
goes beyond the two-component hadron-parton model of
Ref. [25] and allows to study the interference and non-π-
pole background effects on the amplitude level.

The transverse dσT/dt component is insensitive to the
variation of the cut-off in the pion form factor Λγππ.
On the contrary, the magnitude of dσL/dt is driven by
this parameter. In Figure 7 we compare the model re-
sults with data measured at lower values of (Q2,W )
in the Fπ-1 experiment [2]. The calculations are per-
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formed for values of (Q2,W ) corresponding to the first
−t bin [2, 4]. The notations for the curves are the same
as in Figure 6. In these calculations we used the value
of Λ2

γππ = 0.4 GeV2. Also here we find a pronounced
resonance contribution in dσT/dt, dσTT/dt and dσLT/dt.
The slope and magnitude of dσL/dt at forward angles are
also affected by the resonances.

An extraction of l/t partial differential cross sections
requires besides the Rosenbluth separation a fit of dif-
ferent harmonics in the azimuthal φ-angle distribution of
the measured unseparated double differential cross sec-
tions. In the actual experiment one measures d2σ/dtdφ
for two different ε bins. In Figure 8 we show the φ de-
pendence of 2πd2σ/dtdφ in the reaction p(γ∗, π+)n at
fixed −t and two (high and low) values of ε. This is
a representative example of φ-dependent exclusive cross
sections. In Figure 8 the solid curves are the model re-
sults and experimental data are from [1–3]. As in Fig-
ures 6 the dashed curves correspond to the contribution

of the π-exchange and dash-dotted curves do not account
for the resonances. The upper set of solid, dashed and
dash-dotted curves belongs to the higher value of ε.

In Figure 9 we confront the result of our calculations
with the new JLAB p(γ∗, π+)n data [52] for unsepa-
rated cross sections dσU/dt, see Eq. (6), at values of
W ≃ 2.2÷2.4 GeV and for different values of (Q2, ε) bins.
The square symbols connected by solid lines describe the
model results. The discontinuities in the curves result
from the different values of (Q2,W, ε) for the various −t
bins. The data are very well reproduced by the present
model in the measured Q2 range from Q2 ≃ 1 GeV2

up to 5 GeV2. In Figure 9 we also show the contribu-
tions of the longitudinal εdσL (dash-dotted curves) and
transverse dσT (dashed curves) cross sections to the to-
tal unseparated cross sections (solid curves) for the low-
est and highest average values of Q2 = 1.1 GeV2 and
Q2 = 4.7 GeV2. The cross sections at high values of Q2

are flat and totally transverse. At forward angles a strong
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peaking of the cross section atQ2 = 1.1 GeV2 comes from
the large longitudinal component in this case. The off-
forward region is transverse. This behavior agrees with
the results from [25]. As we shall see, the same behavior
is observed in the DIS regime at HERMES [7] where the
value ofW is higher. At HERMES, because of the Regge
shrinkage of the π-reggeon exchange and smaller trans-
verse component, the forward peak just has a steeper
−t-dependence [27].
We now turn to π− production at JLAB. In [25]

the transverse response dσT/dt in the exclusive reaction
n(γ∗, π−)p was found to be smaller than in the reac-
tion p(γ∗, π+)n. The present results for the π− channel
are parameter free. The u-channel transition form fac-
tors, Eq. (44), entering n(γ∗, π−)p have different behav-
ior, since, contrary to the s-channel form factors which
depend on (s,Q2) now they depend on u and Q2 with

u = −s+ 2M2
p − t+M2

π −Q2. (46)

Here we calculate the ratio of π−/π+ partial cross sec-
tions which is of present interest in the dedicated exper-
iments at JLAB [50]. In Figure 10 we show the results

for the ratio of longitudinal RL = dσπ−

L /dσπ+

L (dashed

curves) and transverse RT = dσπ−

T /dσπ+

T (solid curves)
cross sections as a function of −t + tmin, where −tmin

denotes the minimum value of −t for a given Q2 and
W . The curves have been calculated for the values of

W = 1.95 GeV (top panels) and W = 2.2 GeV (bottom
panels). The values of Q2 vary from Q2 = 0.6 GeV2 (left
top) and Q2 = 1 GeV2 (right top) to Q2 = 1.6 GeV2 (left
bottom) and Q2 = 2 GeV2 (right bottom). At forward
angles the longitudinal ratio RL is close to unity and
shows a slow increase followed by a decrease at higher
values of −t. On the contrary, the ratio RT is practically
constant. For Q2 = 0.6 GeV2 it is around RT ≃ 0.6.
With increasing value of Q2 the ratio RT tends to de-
crease further and at Q2 = 2 GeV2 it gets RT ≃ 0.26.

An important mechanism which contributes to the
π−/π+ asymmetry is an exchange of the ρ-trajectory.
It is destructive in π− and constructive in π+ chan-
nels, respectively. In Figure 10 the dash-dotted (longi-
tudinal ratio) and dash-dash-dotted curves (transverse
ratio) correspond to the results without the exchange
of ρ. We conclude that dσT/dt in the π− channel is
much smaller than in the π+ production. Also the inter-
ference cross sections follow this behavior since smaller
transverse strength translates into smaller dσTT/dt and
dσLT/dt.

VIII. p(γ∗, π+)n AND n(γ∗, π−)p AT DESY

The early DESY data [13–16] and [12] provide an ac-
cess to the p(γ∗, π+)n and n(γ∗, π−)p reactions cross sec-
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tions in essentially the same (Q2,W ) region as at JLAB.
For the proper comparison with data some differences in
the conventions used by the two different groups [13–16]
and [12] have to be taken into account. The φ conven-
tion used here follows Refs. [13–16]. In [12] the azimuthal
angle is related to that in [13–16] by φ→ π−φ. The lat-
ter results in different signs of the measured interference
cross section dσLT/dt.

In Figure 11 we show the results and the experimental
data [16] for the ratio of exclusive π−/π+ double dif-
ferential cross sections dσ2/dtdφ at the average value
of W = 2.19 GeV and for the average values of Q2 =
0.7 GeV2, ε = 0.86 (left panel) and Q2 = 1.35 GeV2,
ε = 0.84 (right panel). The cross sections are integrated
in the 120◦ < φ < 240◦ azimuthal degree range [16].
The solid curves are the model results. Since, the pa-
rameters of the model are constrained using the JLAB

p(γ∗, π+)n data only, this agreement with data for the
ratio p(γ∗, π+)n/n(γ∗, π−)p of cross sections is indeed
remarkable, see the discussion around Eq. (46). In Fig-
ure 11 (left panel) the dashed curves are the results with-
out the exchange of the ρ(770)/a2(1320)-Regge trajec-
tory. It is seen that the π−/π+ ratio is indeed sensi-
tive to the ρ-exchange amplitude. In the left panel we
also show the compilation of experimental data for the
ratio of π−/π+ photoproduction cross sections at high
energies [55]. For comparison we also show the ratio of
only the transverse cross sections in electroproduction at
Q2 = 0.7 GeV2 (dash-dash-dotted curve).

The dot-dot-dashed curve in Figure 11 (left panel) cor-
responds to our results for the ratio of photoproduction
(Q2 = 0) cross sections atEγ = 16 GeV in the laboratory.
The π−/π+ asymmetry seen in the photoproduction re-
sults mainly from the contribution of the ρ-Regge tra-
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notations for the curves are the same as in Figure 6. The experimental data are from Ref. [13, 14].

jectory. However, in electroproduction the π−/π+ asym-
metry is driven by the resonance contributions through
the different (Q2, s(u)) dependence of the transition form
factors, Eqs. (43) and (44), in the π+ and π− channels.
For instance, the dash-dotted curves in Figure 11 do not
account for the contributions of resonances; the π−/π+

ratio is bigger than unity. In the right panel we show the
results for the values of Q2 = 1.35 GeV2 and ε = 0.84.

Our dash-dotted curves which describe the Regge
model without the r/p-effects are at variance with the
results reported in Ref. [53] where the gauge invariant
Regge model with the nucleon-pole contribution has been

shown to be in remarkable agreement with the π−/π+

electroproduction ratio. This is surprising since the
model of [53] is not compatible with the JLAB l/t data
in the same (Q2,W ) region [4].

Before drawing definite conclusions concerning these
discrepancies, we compare in Figure 12 our model results
with the measured differential cross sections dσU/dt =
dσT/dt+ εdσT/dt (top), dσTT/dt (middle) and dσLT/dt
(bottom) in exclusive reactions p(γ∗, π+)n (left panels)
and n(γ∗, π−)p (right panels). The experimental data
are from Refs. [13, 14]. The average values of (Q2,W, ε)
are the same as in Figure 11 for the π−/π+ ratio. The



19

0

10

20

30

40

50
dσ

L
/d

t [
µb

/G
eV

2 ]

0

10

20

30

0

5

10

15

20

25

dσ
T

 /d
t [

µb
/G

eV
2 ]

0

3

6

9

12

-8

-4

0

4

8

dσ
T

T
 /d

t [
µb

/G
eV

2 ]

-4

-2

0

2

4

0 0.05 0.1

-t [GeV
2
]

-5

0

5

10

15

dσ
L

T
 /d

t [
µb

/G
eV

2 ]

0 0.1 0.2 0.3

-t [GeV
2
]

-6

-4

-2

0

2

Q
2 

= 0.35 GeV
2

Q
2 

= 0.70 GeV
2

W = 2.10 GeV W = 2.19 GeV
DESY DESY
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experiments. The notations for the curves are the same as in
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are from Ref. [12] and for Q2 = 0.7 GeV2 are from Ref. [16].

dashed curves which refer to the contribution of the π-
exchange are equal in both channels. The solid curves
describe the model results and, as one can see, it is not
surprising why the π−/π+ ratio of double differential
cross sections, which involves all four l/t components,
is well reproduced. A model without the resonance con-

tributions (dash-dotted curves in Figure 12) fails in both
the p(γ∗, π+)n and n(γ∗, π−)p channels and the behav-
ior of the corresponding results (dash-dotted curves in
Figure 11) is expected for the π−/π+ ratio.

In Figure 13 (left panel) we compare the results of
our calculations with l/t separated p(γ∗, π+)n data
from [12] with average values of Q2 = 0.35 GeV2 and
W = 2.1 GeV. These data are kinematically close to the
real photon point where one does not expect a varia-
tion of the pion form factor from its VMD value with
Λ2
γππ = m2

ρ(770) ≃ 0.59 GeV2. The curves correspond

to this choice of Λγππ. In the right panel we also show
the l/t separated cross section at Q2 = 0.7 GeV2 and
W = 2.19 GeV. The notations for the curves are the same
as in Figure 12. As one can notice, because of different
conventions for φ, the signs of the measured interference
cross section dσLT are different for the two data sets.

The interference pattern between the meson-exchange
and resonance contributions is different in the π+ and π−

channels. For π− production there are no data for the
longitudinal and transverse cross sections. However, we
conclude that the present model describes rather well the
available π+ and π− data for the unseparated cross sec-
tions dσU/dt and the interference cross sections dσTT/dt
and dσLT/dt. Concerning the π−/π+ ratio, we have seen
that the resonance contributions are important and that,
contrary to the results of Ref. [53], the model based on
reggeon exchanges is not compatible with the observed
ratio1.

IX. DEEPLY VIRTUAL p(e, e′π+)n AT HERMES

The HERMES data at DESY [7] in exclusive reaction
p(e, e′π+)n extend the kinematic region to higher values
of W 2 ≃ 16 GeV2 toward the DIS region and higher
values of −t. At HERMES the kinematic requirement
Q2 > 1 GeV2 has been imposed on the scattered electron
in order to select the hard scattering regime. The result-
ing range is 1 < Q2 < 11 GeV2 and 0.02 < xB < 0.55
for the Bjorken variable. The measured cross sections
have been integrated over the azimuthal angle φ and a
separation of the transverse and longitudinal parts was
not feasible. With the 27.6 GeV HERA beam energy
the ratio of longitudinal to transverse polarization of the
virtual photon ε is close to unity.

The results for the unseparated differential cross sec-
tions dσU/dt = dσT/dt + εdσL/dt in deeply virtual
p(γ∗, π+)n reaction at HERMES are shown in Figure 14.

1 Attempting to resolve the latter discrepancy we assumed that in
Figures 2 and 3 of Ref. [53] the convention of Ref. [12] is used for
φ. This is fine for the data set from [12] in Figures 3 of Ref. [53]
but is not correct for the data set from [14] presented in Figures 2
of Ref. [53]. Interestingly, then the π−/π+ ratios of Ref. [53] are
very well reproduced.
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p(γ∗, π+)n at HERMES. The experimental data are from Ref. [7]. The calculations are performed for the average values of
(Q2, xB) in a given Q2 and Bjorken xB bin. The solid curves are the full model results. The dash-dotted curves correspond to
the longitudinal ǫdσL/dt and the dashed curves to the transverse dσT/dt components of the cross section. The dash-dash-dotted
curves describe the results without the resonance/partonic effects.

We perform the calculations for the average (Q2, x) val-
ues in a given Q2 and xB bin [57]. In Figure 14 instead
of t, the quantity −t+ tmin is again used, where −tmin
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FIG. 15: (Color online) dσU/dt in exclusive reaction
p(γ∗, π+)n for the average values of Q2 = 1.4 GeV2 and
xB = 0.08. The HERMES data, the solid and the dash-dotted
curves are the same as in the left panel of Figure 14. The
dashed and dash-dash-dotted curves describe the contribu-
tions of the π-exchange and resonance/partonic mechanisms
to ǫdσL/dt, respectively. The dot-dot-dashed curve describe
the π+ photoproduction for Eγ = 8 GeV (W ≃ 4 GeV). The
photoproduction data are from [54].

denotes the minimum value of −t for a given Q2 and xB.
The different panels in Figure 14 correspond to the differ-
ent Q2 and x bins. In the calculations we use the cut-off
Λ2
γππ = 0.46 GeV2 in the pion form factor, Eq. (14). This

is an optimal value needed for the description of high Q2

data at JLAB. In Figure 14 the model results which in-
clude both the meson-exchange and r/p-contributions
are shown by the solid curves. The dash-dotted and the
dashed curves correspond to the longitudinal ǫdσL/dt and
to the transverse dσT/dt components of the cross section,
respectively. The dash-dash-dotted curves describe the
results without the r/p-contributions.

Interestingly, the physics of p(γ∗, π+)n in the DIS re-
gion at HERMES is essentially the same as at JLAB
where the value of W is smaller (2 GeV vs. 4 GeV). Just
contrary to the situation in the JLAB experiment the
longitudinal cross section at HERMES determines the
total differential cross section at small −t. As at JLAB
the transverse cross section at HERMES is dominated by
the r/p-mechanism. At JLAB the transverse cross sec-
tion is somewhat larger and at forward angles comparable
with the longitudinal cross section. In deeply virtual pro-
duction of π+ at HERMES the transverse cross section
gets smaller at forward angles and the cross section is
dominated by the exchange of Regge trajectories, with π
being the dominant trajectory. The π-reggeon exchange
contributes mainly to the longitudinal response σL and at
low momentum transfer −t the variation of the forward
cross section with Q2 falls down as the electromagnetic
form factor of the pion σL ∝ (Fγππ(Q

2))2. In the off-
forward region, −t > 1 GeV2, because of the exponential
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FIG. 16: (Color online) −t+ tmin dependence of the interference cross sections dσTT (dashed curves) and dσLT (solid curves) at
HERMES. The average values of Q2 and xB used for different (Q2, xB) bins are the same as in Figure 14. In the left panel the
dash-dotted and dash-dash-dotted curves describe the contribution of the π-reggeon exchange to dσTT and dσLT, respectively.

fall-off of Regge contributions as a function of −t, the
meson-exchange processes are already negligible. Above
−t > 1 GeV2 the model cross section points mainly to-
ward the direct coupling of the virtual photons to par-
tons. Indeed, this is rather natural, since with increasing
−t at fixed Q2 smaller distances can be accessed. This
is opposed to t-channel meson-exchange processes which
involve peripheral production of π+.

Contrary to the two-component model of Ref. [27], in
the present model there is a sizable longitudinal r/p-
component which is effective in the off-forward π+ pro-
duction at low values of Bjorken xB. For instance, the dip
in εdσL/dt , see the dash-dotted curves in Figure 14, re-
sults from the interference between the meson-exchange
and the r/p-contributions. In Figure 15 we show the
different contributions to εdσL/dt for the lowest xB bin.
The solid and dash-dotted curves in Figure 15 are the
same as in Figure 14 (left panel). The contribution
of the π-exchange to εdσL/dt is shown by the dashed
curve. The latter falls exponentially down as a function
of −t. The dash-dash-dotted curve describe the r/p-
contribution to εdσL/dt. It vanishes at forward angles
and by the destructive interference with the π-reggeon
exchange produces a dip in εdσL/dt. With increasing −t
the partonic component of εdσL/dt continues to domi-
nate the longitudinal response.

In Figure 15 the dot-dot-dashed curve describes the
real photon limit Q2 = 0 of the model cross section for
Eγ = 8 GeV (W ≃ 4 GeV). The photoproduction data
are from Ref. [54]. This is the same W region as in the
HERMES electroproduction data. The model is in agree-
ment with both the photo- and electroproduction data.

In Figure 16 we present the results for the interfer-
ence cross sections at HERMES energies. dσTT/dt and
dσLT/dt are sizable, and follow a behavior observed al-

ready at JLAB energies. For instance, if the cross sec-
tion would be dominated by the π-reggeon exchange then
dσTT/dt would be positive (dash-dotted curves in the left
panel) and dσLT/dt negative (dash-dash-dotted curves in
the left panel). The interference between the π-trajectory
and r/p-contributions change the sign of both dσTT/dt
and dσLT/dt. The solid and dashed curves describe the
model results for dσLT/dt and dσTT/dt, respectively.

X. Q2 DEPENDENCE OF THE CROSS

SECTIONS

It has been proposed that the Q2 dependence of l/t
separated exclusive p(γ∗, π+)n cross sections may pro-
vide a test of the factorization theorem [19] in the sep-
aration of long-distance and short-distance physics and
the extraction of GPD. The leading twist GPD scenario
predicts for σL ∼ 1/Q6 and σT ∼ 1/Q8. An observa-
tion of the Q2 power law scaling is considered as a model
independent test of QCD factorization.

The Q2 behavior of cross sections in exclusive reaction
p(γ∗, π+)n has been studied at JLAB in Ref. [3]. It was
shown that while the scaling laws are reasonably consis-
tent with the Q2 dependence of the longitudinal σL data,
they fail to describe the Q2 dependence of the transverse
σT data. The Q2 dependence of the p(γ∗, π+)n cross sec-
tion in DIS has been also studied at HERMES [57]. It
was found that the Q2 dependence of the data is in gen-
eral well described by the calculations from GPD models
which include the power corrections, see Ref. [57] and ref-
erences therein. However, the magnitude of the theoreti-
cal cross section is underestimated. The Regge model of
Ref. [38] was shown to be compatible with, both, −t and
Q2 dependencies of the HERMES data. In the following
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cross sections in p(γ∗, π+)n reaction at fixed values of −t and
Bjorken xB. The solid curves are the model predictions for
the scaling curves. The dashed curves correspond to the con-
tribution of the π-reggeon exchange alone. The dash-dotted
curves are the model results without the contributions of res-
onances. The experimental data are from Ref. [3].

we check this predicted σL/σT ∼ Q2 scaling within our
model calculations.

A. JLAB data

In Figure 17 we show our results for the Q2 depen-
dence of p(γ∗, π+)n reaction cross sections dσL/dt and
dσT/dt at fixed −t and Bjorken variable xB . The ex-
perimental data are from Ref. [3] and correspond to the
forward π+ production. The solid curves are the model
predictions and describe the available data very well. The
dashed curves describe the contribution of the π-reggeon
exchange to the Q2 scaling curves only. The dash-dotted
curves are the model results without the resonance con-
tributions. The latter effect is again large in the trans-
verse cross section and gives only small correction to the
longitudinal cross section dσL/dt. The Q

2 dependence of
dσL/dt is essentially driven by the pion form factor.
The Q2 dependence of the ratio of longitudinal dσL/dt

to transverse dσT/dt differential cross sections for the for-
ward π+ production is shown in Figures 18. The different
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FIG. 18: (Color online) TheQ2 dependence of the ratio of lon-
gitudinal dσL/dt to transverse dσT/dt differential cross sec-
tions in the forward π+ production. The different curves cor-
respond to different values of Bjorken scaling variable xB.

curves correspond to different values of xB. All the curves
start at the value of W ≃ 1.9 GeV. For small and inter-
mediate values of xB the model results show an increase
of the ratio dσL/dσT as a function of Q2. Only at small
values of Bjorken xB the ratio dσL/dσT is qualitatively
in agreement with the predicted ∼ Q2 behavior. In the
valence quark region above xB ≃ 0.6 the cross section ra-
tio scales and is actually independent of the value of Q2.
In this region the transverse component σT dominates
the π+ electroproduction cross section. In the experi-
mental determination of the pion transition form factor
from forward σL data one can, therefore, better isolate
the longitudinal response by minimizing the Bjorken xB.

B. HERMES data

In Section IX we concluded that the physics content
of the HERMES deep exclusive p(γ∗, π+)n data is es-
sentially the same as at JLAB. Figure 19 shows the Q2

dependence of the measured cross sections in DIS for dif-
ferent xB bins [7, 57]. These are the same data sets from
HERMES (see previous section) integrated over −t. The
Q2 dependence of the experimental data is well described
by the calculations (solid curves) from the present model.
The dashed and dash-dotted curve describe the longitudi-
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nal εσL and the transverse σT components, respectively.
In the region of small Bjorken xB, see left panel in Fig-

ure 19, the integrated longitudinal component dominates
over the transverse cross section. With increasing xB the
strength of the transverse component is increasing and
for values of xB in the third bin the transverse cross sec-
tion σT becomes the dominant part of the exclusive cross
section. An increase of the relative contribution of σT as
a function of xB can be clearly seen in the right panel of
Figure 19 where 0.26 < xB < 0.55. There the first Q2

bin corresponds to the average value of xB = 0.29 and
the last Q2 bin to the average value of xB = 0.44 [57].

XI. BEAM SPIN ASYMMETRY

In this work we have restricted ourselves to exclusive
(e, e′π±) reactions with an unpolarized target. With a
polarized beam (~e, e′π±) and with an unpolarized target
there is an additional component σLT′ , Eq. (3), which
is proportional to the imaginary part of an interference
between the l/t photons and therefore sensitive to the
relative phases of amplitudes.
In general, a nonzero σLT′ or the corresponding beam

SSA ALU(φ), Eq. (7), demands interference between sin-
gle helicity flip and nonflip or double helicity flip ampli-
tudes. In Regge models the asymmetry may result from
Regge cut corrections to single reggeon exchange [58].
This way the amplitudes in the product acquire different
phases and therefore relative imaginary parts. A nonzero
beam SSA can be also generated by the interference pat-

tern of amplitudes where particles with opposite parities
are exchanged.

In the following we discuss briefly the generic features
of the beam SSA in the present model. The compara-
tive analysis of the SSA at JLAB and HERMES will be
presented in the forthcoming publication.

In the left panel of Figure (20) we plot the CLAS

data [6] for the azimuthal moment A
sin(φ)
LU associated with

the beam SSA, Eq. (8), in the reaction p(~e, e′π+)n. These
data have been collected in hard scattering kinematics
Ee = 5.77 GeV, W > 2 GeV and Q2 > 1.5 GeV2.
The experiment shows a sizable and positive beam SSA.
In the left and right panels of Figure (20) we present

the results for the azimuthal moments A
sin(φ)
LU in the re-

actions p(~e, e′π+)n and n(~e, e′π−)p, respectively. The
(Q2,W ) binning of the experimental data point is not
available. In the following the calculations are done for
the lowest (Q2,W ) bin corresponding to the values of
Q2 = 1.5 GeV2 and W 2 = 4 GeV2.

At first, we consider A
sin(φ)
LU generated by the ex-

change of Regge trajectories. In Figure (20) the dashed
curves describe the model results without the r/p-effects
and neglecting the exchange of the axial-vector a1(1260)

Regge trajectory. This model results in a zero A
sin(φ)
LU

and therefore a zero beam SSA. The addition of the un-
natural parity a1(1260)-exchange generates by the inter-
ference with the natural parity ρ(770) exchange a siz-

able A
sin(φ)
LU in both channels. This result corresponds

to the dash-dotted curves in Figure (20). In the rest
of observables discussed above the effect of the axial-
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effects. Right panel: The beam spin azimuthal moment A
sin(φ)
LU in exclusive reaction n(γ∗, π−)p. The notations for the curves

are the same as in the left panel.

vector a1(1260) is small. However, as one can see, the
contribution of a1(1260) is important in the polarization
observables. For instance, a strong interference pattern
of the a1(1260)-reggeon exchange makes the polarization
observables, like the beam SSA, very sensitive to the dif-
ferent scenarios [45] describing the structure and behav-
ior of a1(1260) in high-Q2 processes.
In the last step we account for the r/p-contribution.

The latter strongly influence the asymmetry parameter

A
sin(φ)
LU . The model results (solid curves) are in agreement

with the positive A
sin(φ)
LU in the π+ channel and predict

much smaller A
sin(φ)
LU in the π− channel. A sizable and

positive A
sin(φ)
LU has been also observed at HERMES in

π+ SIDIS close to the exclusive limit z → 1 [59].

XII. A BENCHMARK FOR JLAB AT 12 GEV:

p(γ∗, π+)n AT CORNELL

A forthcoming upgrade of the JLAB to 12 GeV will
allow to measure p(e, e′π+)n and n(e, e′π−)p reactions
for values of Q2 = 1.6÷6.0 GeV2 andW near 3 GeV [56].

This is just an intermediate region between the present
JLAB and the deep exclusive HERMES data. In this
(Q2,W ) region there are old Cornell data [10] around
W ≃ 3.1 GeV and values of Q2 ≃ 1.2 and 1.7 GeV2.
These data may serve as a benchmark for the JLAB at
12 GeV predictions.

Figure 21 shows the Cornell data [10] and the calcu-
lated differential cross sections for the electroproduction
of π+ meson as a function of −t. As an example, we
selected data with the virtual-photoproduction planes of
the emitted pions in average parallel −45◦ < φ < 45◦ to
the electron scattering plane. The solid curves in Fig-
ure 21 describe the model results and the dashed curves
correspond to the results without the resonance contri-
butions. The cross sections have been integrated over
the corresponding range of azimuthal out-of-plane an-
gles. Figure 22 shows the calculated ratio of π− and π+

differential cross sections (solid curve) as a function of
−t. The data are from [10]. As in Figure 21 the cross
sections have been integrated over the range of azimuthal
out-of-plane acceptance −45◦ < φ < 45◦.

The difference between the solid and dashed curves
in Figure 21 comes from the contribution of reso-
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nances. The latter effect is expected to be important
at JLAB@12, see Section XIII for the results.
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FIG. 22: (Color online) The π−/π+ ratio of differential cross
sections for the electroproduction of π− and π+ mesons at
Cornell. The data are from [10]. The theoretical cross section
has been integrated over the range of azimuthal out-of-plane
acceptance −45◦ < φ < 45◦.

XIII. JLAB AT 12 GEV

Finally, in this section we provide the predictions for
the l/t separated π± differential cross sections at for-
ward angles in the (Q2,W ) kinematics proposed for the
forthcoming Fπ-12 experiment [56] at JLAB. The pri-
mary goal of the measurements is an extraction of the
pion form factor from the longitudinal data at high val-
ues of Q2.

In Figures 23 and 24 we plot the −t + tmin depen-
dence of the l/t partial differential cross sections dσT/dt
(solid), dσL/dt (dashed), dσLT/dt (dash-dotted) and
dσTT/dt (dash-dash-dotted) in the reactions p(γ∗, π+)n
and n(γ∗, π−)p, respectively. In these calculations we
used the value of Λ2

γππ = 0.46 GeV2.

As one can see, at JLAB@12 in exclusive reaction
p(γ+, π+)n the transverse cross section dσT/dt gets
smaller compared to JLAB@5, see solid curves in Fig-
ures 23. But dσT/dt still gives important contributions
at forward angles. The ratios R = dσT/dσL of the trans-
verse and longitudinal cross sections at forward π+ angles
t = tmin for W reached at JLAB@5 and JLAB@12 are
compared in Table II. For the comparison the values of
Q2 = 1.6 and 2.45 GeV2 are used. With increasing value
of W at fixed Q2 the ratio gets smaller and makes an
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accurate determination of the longitudinal cross section
needed for the extraction of the pion from factor feasible.

In the π− channel the contribution of the tranverse
and interference cross sections is predicted to be much
smaller. As one can see in Figure 24 the π− electro-
production cross section is largely longitudinal (dashed
curves). If true this may provide a complimentary and
probably more reliable access to the pion form factor from
exclusive π− electroproduction off the deuteron target.

JLAB Q2 W R = dσT/dσL

[GeV2] [GeV]

5 GeV 1.60 2.2 0.43

2.45 2.2 0.68

12 GeV 1.60 3.0 0.28

2.45 3.0 0.32

TABLE II: The ratio R = dσT/dσL of the transverse and
longitudinal cross sections at forward angles t = tmin in a
kinematics of JLAB@5 with W = 2.2 GeV and JLAB@12
with W = 3 GeV and values of Q2 = 1.6 and 2.45 GeV2.

XIV. SUMMARY

In summary, a description of exclusive charged pion
electroproduction (e, e′π±) off nucleons at high energies
is proposed. Following a two-component hadron-parton
picture of Refs. [25, 27] the model combines a Regge pole
approach with residual effects of nucleon resonances. The
contribution of nucleon resonances has been assumed to
be dual to direct partonic interaction and therefore de-
scribes the hard part of the model cross sections. The
resonance/partonic effects are taken into account us-
ing a Bloom-Gilman connection between the exclusive
hadronic form factors and inclusive deep inelastic struc-
ture functions. In the soft hadronic sector the exchanges
of π(140), vector ρ(770) and axial-vector a1(1260) and
b1(1235) Regge trajectories have been considered.

We have shown that with only a few physical assump-
tions a quantitative description of exclusive π+ and π−

electroproduction data can be achieved in a large range
of (Q2,W ) from JLAB to DIS region at HERMES. In
particular, the l/t partial longitudinal, transverse and
interference cross sections measured at JLAB and DESY
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FIG. 24: (Color online) −t + tmin dependence of l/t separated differential cross sections dσT/dt (solid), dσL/dt (dashed),
dσLT/dt (dash-dotted) and dσTT/dt (dash-dash-dotted) in exclusive reaction n(γ∗, π−)p in the (Q2,W ) kinematics at JLAB@12.

are reproduced. Our principal result is that a longstand-
ing problem concerning the description of the transverse
and interference cross sections can be solved by the reso-
nance/partonic effects in line of the DIS mechanism pro-
posed in [25, 27]. However, the present model goes be-
yond the two-component approach of [25, 27] and allows
to treat the resonance/partonic contributions on the am-
plitude level. The latter show up as a large transverse
background contribution to the π quasi-elastic knockout
mechanism. As in [25, 27], we find that at high values of
Q2 the resonances dominate in σT.

The contribution of resonances in the forward longitu-
dinal response σL is rather small and makes an experi-
mental isolation of the pion-pole amplitude and the pion
transition form factor in the region of Bjorken xB < 0.5
feasible. The interference pattern of the π-exchange and
resonance contributions is sufficient to explain the sign
and magnitude of the interference σTT and σLT cross
sections measured at JLAB and DESY. The same res-
onance/partonic mechanism is responsible for the posi-
tive azimuthal beam SSA observed in p(~e, e′π+)n. On
the contrary, the beam SSA in deep exclusive π− pro-

duction off the neutrons is predicted to be much smaller
in magnitude and very sensitive to the different scenarios
concerning the structure of the a1(1260) meson.

The Q2 behavior of the model exclusive p(γ∗, π+)n
reaction cross sections is in agreement with JLAB and
deeply virtual HERMES data.

We have furthermore calculated the ratio of π−/π+

cross sections which is of present interest in the dedi-
cated experiments at JLAB. Model predictions for JLAB
at 12 GeV are also provided. On the experimental side,
the present results may be used as a guideline in the ex-
perimental analysis of background contributions to the π
quasi-elastic knockout mechanism. The latter is impor-
tant for the extraction of the pion transition form factor
to minimize systematic uncertainties.
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Appendix A: The partial virtual-photon nucleon

cross sections

The longitudinal/transverse (l/t) separated photon-
nucleon cross sections take the forms

1

N
dσL
dt

= (Jµǫ0µJ
ν†ǫ†0ν ), (A1)

1

N
dσT
dt

=
1

2

∑

λ=±1
(JµǫλµJ

ν†ǫ†λν ), (A2)

1

N
dσTT

dt
= −1

2

∑

λ=±1
(JµǫλµJ

ν†ǫ†−λν ), (A3)

1

N
dσLT
dt

= − 1

2
√
2

∑

λ=±1
λ[(Jµǫ0µJ

ν†ǫ†λν ) + (JµǫλµJ
ν†ǫ†0ν )],

(A4)

1

N
dσLT′

dt
= − 1

2
√
2

∑

λ=±1
λ[(Jµǫ0µJ

ν†ǫ†λν )− (JµǫλµJ
ν†ǫ†0ν )],

(A5)

where (...) stands for the sum and average over the initial
and final nucleon spins. The normalization factor reads

N =
αe

4π

2πM2
N

(W 2 −M2
N )Wq∗

, (A6)

where q∗ is a three momentum of the incoming virtual
photon in the γ∗N center of mass frame. ǫλµ are the ba-
sis vectors of circular polarization for the virtual photon
with helicities λ= ± 1, 0 quantized along the three mo-
mentum ~q, i.e.,

ǫ±µ = ∓ 1√
2
(0, 1,±i, 0), (A7)

ǫ0µ =
1

√

Q2
(
√

ν2 +Q2, 0, 0, ν), (A8)

and Jµ is the nuclear transition axial-vector current de-
scribing the pion production in the momentum space.

Appendix B: On the gauged electric amplitude

The Lorentz tensor-vector decomposition of the
nucleon-pole term in Eq. (9) is given by

ūs′(p
′)γ5

(p+ q)σγ
σγµ +Mpγ

µ

s−M2
p + i0+

us(p) = ūs′(p
′)γ5

[

iσµσqσ
s−M2

p + i0+
+

(p+ p′ + k′)µ

s−M2
p + i0+

]

us(p), (B1)

where σµσ = i
2 [γ

µ, γσ]. The axial-tensor term in the
r.h.s. of Eq. (B1) is gauge invariant by itself. It turns
out that only the orbital part proportional to p+p′+k′ is
needed to conserve the charge in the sum with the π-pole
amplitude, the first term in Eq. (9). In photoproduction
the orbital part has no physical significance because it ap-
pears in the physical scattering amplitude multiplied by
the polarization vector ǫλµ. Since, qµǫ±µ = pµǫ±µ = 0 the

product (p+ p′ + k′)ǫ±µ = (2p+ q)ǫ±µ = 0. The nucleon-

pole term generates a large axial-tensor background to
the meson-pole amplitude which has important conse-
quences in photoproduction. For instance, since the in-
terference of π with ρ(770) is trivially zero it is σµσγ5 in
the nucleon-pole term which, by interference with ρ, is
responsible for the π−/π+ asymmetry. It is also this term
which explains the forward peak in the forward π± pro-
duction and the rapid variation of the polarized photon
asymmetry in the same region.
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